
BinSeg: Leveraging Semantic Segmentation for
Code and Data Separation in Non-standard

Binary Formats

Hadjer Benkraouda1, Deebthik Ravi3⋆, Aizaz Ansari2⋆, Gautham Dinesh2, and
Michail Maniatakos1

1 Center for Cyber Security, New York University Abu Dhabi, UAE
2 Electrical and Computer Engineering, New York University Abu Dhabi, UAE

3 National Institute of Technology, Tiruchirappalli, India

Abstract. Static binary analysis has been a very integral step in soft-
ware security analyses such as reverse engineering and vulnerability/malware
discovery. This method is especially useful when the source code of the
software under inspection is proprietary or unavailable. A crucial step to
ensure robust static analysis is differentiating code from data. Correctly
marking the boundaries between data and code sections avoids errors
due to misinterpreting data as executable instructions and vice-versa.
Classical binary analysis tools such as IDA Pro and Ghidra have been
very successful with known binary formats i.e. PE, ELF, and Mach-O.
However, one of the major limitations of the current binary analysis tools
is their inability to automatically analyze atypical formats. Due to the
advent of Industry 4.0 and the proliferation of IoT devices, an increase
of binary files of unknown formats has surfaced. Manually reverse engi-
neering the details of each format has a prohibitive time cost. Therefore,
an important and urgent challenge for securing these devices is to au-
tomate the binary analysis for unknown binary formats. In this paper
we aim to automate one of the stages of binary analysis, code and data
separation. Our method converts the binary files into images. Next, our
method leverages image-based machine learning algorithms to perform
semantic segmentation to identify the data and code sections of binary
images. We train our model on known binary formats (ELF) and then
test it on binary files of non-standard formats (programmable logic con-
troller binaries). Our results show that the trained model has achieved a
maximum accuracy value ranging between 91.91% and 89.22% depend-
ing on the underlying methodology used for interpreting binary files. The
results also show that our suggested method performs very well for code
section detection, while it under-performs for embedded bytes.

Keywords: Binary analysis, Machine learning, Industrial control sys-
tems security

⋆ Both authors contributed equally to this research



2 H. Benkraouda et al.

1 Introduction

Static binary analysis is the technique used to analyze programs sans-source
code without running them. This technique is used indispensably in many ar-
eas including performance modeling [18], vulnerability detection [8], binary re-
verse engineering and reconstruction, binary modification and rewriting when
the source code is not available, and static binary translators [5]. Research inter-
est in binary analysis has significantly increased in the last years. Recent projects
concerning binary analysis include tools and methods that aid human analysts
or automate analysis tasks. They range from disassemblers and decompilers,
to complex analysis frameworks [22, 4] that combine static analysis with other
techniques, primarily symbolic execution [20, 21], fuzzing [7, 9], or both [23].

To be able to perform static analysis, a tool has to have the ability to disas-
semble a binary and reconstruct its control flow graph. Modern disassemblers rely
heavily on heuristics, this makes the process of disassembly undecidable [26]. The
most important step to ensure accurate disassembly is to precisely identify code
instructions and data within a binary file. Identifying code instructions/sections
is especially hard while performing static analysis because the program can not
be run. Although dynamic analysis tools might help in identifying some of the
instructions used in the program, they do not generate a complete set of all the
instructions within a binary. Additionally, running the binary under test can be
dangerous if the binary is malicious or faulty. Standard file formats such as ELF,
PE, and Mach-O are organized into sections (e.g., .text, .data) and have head-
ers that list the sections and their relative addresses, including their class (e.g.,
code, data). Even with addition of metadata that demarcates labeled sections,
data bytes can be sometimes included within these sections 4.This happens of-
ten through compiler optimizations. Often, compilers pad functions with data
bytes to ensure memory alignment or enhanced performance [26]. Embedding
data in code sections has also been used in creating adversarial examples for
malware samples to evade malware detection tools [13]. For standard formats it
is important to identify those embedded data bytes within code sections.

Binary analysis tools and research have been facing a new challenge in the
recent years. With the recent spread of IoT devices, many non-standard binary
formats have emerged (e.g., PLC binaries [12]). These can be different for each
device and vary from one vendor to another. Manually reverse engineering the
format of each of these devices can have a prohibitive time cost. Additionally,
most embedded device firmware images are not structured into sections, but
rather come in the form of a binary blob. For both of the aforementioned binary
files (i.e., non-standard and binary blobs) it is important to be able to identify
code sections and any data embedded within these sections. In this paper we
focus on the problem of identifying code sections and the embedded data bytes
within code sections for non-standard binary formats.

4 We refer to all instructions as code and to everything else as data. We also refer to
sections composed of code as code sections and all other sections as data sections.



BinSeg: Code and Data Separation in Non-standard Binary Formats 3

Recent research efforts have shown that binary analysis can be greatly im-
proved using data visualization techniques. Fields, such as malware detection,
have seen significant improvements in accuracy, time, and memory consump-
tion using visualized binaries when compared to raw binary analysis. Visualiza-
tion based binary analysis methods have been successful due to their ability to
leverage the advances in deep learning approaches in recognizing patterns and
underlying characteristics of the binary [3]. Motivated by these results, in this
work we propose a method that leverages data visualization techniques to create
images that correspond to each binary file. Next, our method makes use of se-
mantic segmentation to separate code and data sections in non-standard binary
formats. As a results our contribution is 2-fold:

1. We propose a methodology that automates code and data separation for non-
standard binary formats by training semantic segmentation models without
relying on any ISA specific features.

2. We evaluate our methodology on non-standard binary file formats from real
Wago PLCs and show that it presents a viable solution for section-level code
and data separation.

3. We created datasets for both standard and non-standard binary formats
with their corresponding images and ground-truth class labels.

2 Preliminaries

2.1 Semantic Segmentation

Semantic segmentation is a method developed for object detection within an
image. Semantic segmentation leverages neural networks (e.g., DCNNs, CNNs)
to correctly classify each pixel within an image to a class. Semantic segmen-
tation can perform binary classifications, i.e., foreground and background and
it can also perform multi-label classifications (e.g., car, tree, person). Semantic
segmentation has been deployed in many critical fields ranging from autonomous
vehicles, to human-computer interaction, biomedical image processing, and so-
cial media applications. There have been many proposed underlying architec-
tures for semantic segmenting, most prominently, using ”fully convolutional”
networks [15], U-Net which was specifically developed for biomedical image pro-
cessing. This method maintains high accuracy while using a limited number of
images for training [17], and DeepLab (the state-of-the-art) which rectifies the
loss of localization due to the max-pooling and downsampling introduced by
DCNNs by using Conditional Random Field (CRF) [6]. In our implementation,
we use Deeplab to train our custom semantic segmentation models.

2.2 Code separation problem

The code separation problem can be divided into 2 sub-problems. The first prob-
lem is code section discovery problem. Given a binary b, we are trying to find all
the pairs (an,bn) and (cm,dm). Here a is the set of all starting addresses of code



4 H. Benkraouda et al.

sections, b is the set of all ending addresses of code sections, n is the number
of code sections within the binary, where c is the set of all starting addresses of
data sections, d is the set of all ending addresses of data sections, and m is the
number of code sections within the binary. For standard binary file formats this
information can be found using headers or symbols/metadata added to the bi-
nary, while for non-standard binary file formats this problem is more challenging.
The second problem is the code instruction discovery problem (known simply
as the code discovery problem). After identifying the code and data sections
within a binary, this problem becomes: given a section s formed by (an,bn) and
(cm,dm), we try to locate the bytes that do not belong to the class of the section
(i.e., code bytes within data sections and data bytes within code sections). As
aforementioned, using a neural network based semantic segmentation model to
separate code and data sections and to locate outlier bytes within a section for
non-standard binary formats is particularly appealing, since it can be quickly
retrained to adapt to a given ISA when no ground-truth data is provided for the
non-standard binary format is available.

2.3 Thumb mode

In the case of architectures that support variable-length instructions, when a
piece of data is misinterpreted, the following bytes become misaligned, and may
lead to erroneous and problematic disassembly. On the other hand, RISC archi-
tectures have fixed length instructions, even when some data bytes are misin-
terpreted as instructions, they rarely result in executable instructions. With the
propagation of embedded systems, RISC processors such as ARM and MIPS have
become widely used. RISC processors used to have fixed instruction length, but
due to the demand for lower memory consumption, they started offering mixed-
length instructions (16 bits and 32 bits). In ARM the 16 bit instruction, known
as Thumb instruction set, helps in reducing executables’ sizes. ARM executable
can be built as either ARM-only (32 bit instructions only) or as a mixture of
ARM/Thumb instructions (32 and 16 bit instructions). Although mixed exe-
cutables have instructions of different lengths, they differ from variable-length
CISC executables. In ARM/Thumb executables the Thumb instructions and the
ARM instructions are not intermingled, instead they are separate regions and use
instructions to switch from one mode to the other [5]. While training our model,
we used a dataset that included both ARM/Thumb and ARM executables. We
included ARM/Thumb executables to ensure that the semantic segmentation
models recognize Thumb instructions as code bytes.

2.4 Programmable Logic Controller

PLCs are real-time embedded devices that execute control algorithms to run
physical processes [2]. A typical PLC leverages applications that facilitate pro-
gramming the PLC to perform different tasks. The International Electrotechnical
Commission (IEC) defines industry standards for all PLCs in IEC 61131. IEC



BinSeg: Code and Data Separation in Non-standard Binary Formats 5

61131-3 outlines the software architecture and programming of PLCs by defin-
ing programming languages, data types and variable attribution. PLCs use both
textual and graphical programming languages, such as ladder diagrams, struc-
tured text, instruction list, function block diagrams, and sequential function
charts [24].

PLC binary format PLC binaries do not conform to any of the standard
binary formats. Still, it has some similarities with standard binary formats. IC-
SREF [12] reverse engineers the PLC binary format produced using the Codesys
compiler. PLC binaries are composed of a header, a section that contains the
main program, data sections, and linked libraries. The file includes the header
section in the beginning. The header includes the program’s entry point, stack
size, and dynamic library locator. Unlike conventional headers, this header does
not include information about the section offset addresses or classes. Next is a
subroutine that sets constant variables and initializes functions. The debugger
handler subroutine is located next, this enables dynamic debugging from the
IDE. These two subroutines are followed by user-defined and library functions
and the main PLC program. Finally, the binary file is ended with data sections.

3 Image based code and data separation

In this section we delve into the details of our proposed methodology for code
and data separation. As aforementioned, our method uses data visualization
on standard binary files to generate their corresponding images. We also use
conventional binary analysis tools to establish the ground truth annotation of
code and data bytes within the visualized binaries. Next, the generated dataset
of binary image and ground truth labels is used to train DeepLab, a state of the
art semantic segmentation model. Fig. 1 gives a visual overview of our proposed
methodology.

3.1 Dataset generation

An essential part of designing our solution is building a dataset. Although there
are many datasets that collect binary files, both benign and malicious, to the
best of our efforts we were not able to find a dataset with labeled bytes. To
this end we generated a datasets of visualised binaries and their corresponding
labeled bytes. This section describes the dataset and describes the details of the
processes.

Raw binary dataset We used a dataset made public by Clemens [1]. The
dataset is comprised of benign software and includes binaries from different
Instruction Set Architectures (ISA) and standard bianry formats. In total the
dataset includes 15,291 executable files for 20 architectures. In our training and
validation stages we focused on the 32-bit ARM binaries from this dataset. We



6 H. Benkraouda et al.

Fig. 1: Overview of the semantic segmentation training Setup.

used ARM binaries since the architecture for the non-standard binary format
used in our case-study is also 32-bit ARM based. The subset of the public dataset
included 3907 binary files. From this dataset, we only selected files which were
less than 200kb (3575 files). The size was restricted in order to remove outliers
files that would have skewed the size distribution of the data set.

Format ISA
Number

of binaries
Maximum

size

ELF ARM 3575 200kB

Table 1: Summary of raw binary dataset details.

Binary annotation To create our dataset, the first step was to disassemble the
binary executables obtained made public by Clemens [1]. Since these files were
structured based on one of the standard formats, namely ELF, we were able to
use conventional binary analysis tools. We used IDA Pro [10] to disassemble these
binaries. Using IDA Pro in terminal mode, we wrote a script to automatically
load all the binary files into IDA one by one. For every file, we used the idc
module to identify all the segments (See Fig. 2). These segments were then
traversed and a label was generated for each byte (i.e., code or data). This was
then written to a CSV file alongside their byte values and disassembly (See
Tab. 2). The next step was to convert these reverse engineered CSV files into
images. To label these images, we generated RGB images. In the RGB images,
a pixel in position (x, y) represented whether the pixel in the same position in
the visualized binary corresponded to a code or data byte. The code pixels were
assigned the color green and data pixels were assigned the color red.

Visualization of binary files To visualize the binary files we assess the fol-
lowing aspects:



BinSeg: Code and Data Separation in Non-standard Binary Formats 7

Fig. 2: Segments of an ARM binary alongside their classes and address ranges.

Address Class Disassembly Bytes

10326 Code MOV R9, R0 129-70

59536 Code ADD R5, SP, 0x8C+var 4 34-173

17494 Data DBC 0xCC 204

38978 Code STR.W LR, [SP, 0x78+var 34] 205-248-68-224

43118 Code STR R5, [SP, 4] 1-149

Table 2: Sample of CSV file content.

– Visualization techniques: To visualize the binary executable files we first
convert the hex values and read it as a vector of 8-bit unsigned integers (this
information is available in the CSV files created in the previous step). These
integers can range from 0-255 and can be directly converted to pixels within
an image. The resulting vectors can be converted into multi-dimensional
arrays. In previous work concerning binary file visualizations both RGB and
grayscale images were generated. RGB images encoded more information
about the binary (e.g. entropy and size of sections). In our method we wanted
to minimize the knowledge needed to train different models, we therefore
just rely on the bytes values. Additionally, we just want to classify bytes
into code or data, and therefore visualize our binaries into graysacle images.
These grayscale images thus stored the values of all the bytes in a particular
binary [14].

– Traversal techniques: As mentioned above, we converted binary into a
vector of 8-bit unsigned integers. We then evaluated different methods used
for mapping a vector into a 2-D plan. This was done to maintain proximity
in a region of bytes when converted to an image, the intuition was that
this would result in more accurate section class detection. We specifically
looked at Space filling curves(SFC). SFCs are commonly used to map a multi-
dimensional space into a one-dimensional sequence, but the reverse process
(i.e., a one dimentional array to multi-dimensional space) is also possible, for
our purpose we used it for the latter. There are two major classifications to
SFCs: non-recursive and recursive. Non-recursive SFCs include the Z-Scan



8 H. Benkraouda et al.

Curve and Snake Scan curve whereas recursive SFCs include the Hilbert
Curve, Peano Curve and Gray Code Curve [28]. We chose Snake scan curves
and Hilbert curves since they are the most effective in maintaining spatial
proximity of bytes within the image:
1. Snake Scan: This traversal technique is a fairly simple one, it maps the

binary row-by-row, but keeps the continuity intact (as opposed to the
Z-Scan curve) by picking off at the ends of each row, hence creating
alternating end points on each row (See Fig.3a).

2. Hilbert Curves: The Hilbert curve is a space filling curve that visits every
point in a square grid with a size of any power of 2. The basic elements of
the Hilbert curves are square structures with one open side and vectors
that joins these square structures, these structures are what dictate the
traversal order (See Fig.3b).

There are certain underlying properties of SFCs, such as coherence in con-
tinuity, clustering and preservation of direction. Although the snake-scan
preserves direction relatively well, the Hilbert curves outperform in cluster-
ing and coherence in continuity. We show our experimental results later in
the paper (See Section 4).

(a) Snake curve traversal path. (b) Hilbert curve traversal path.

– Dimension selection: Since we convert the binary into a vector we also an-
alyzed the optimal image dimensions. Since we are using SFC to convert the
vector into a 2-D array each SFC method had to be assessed independently:
1. Snake Scan: our initial intuition was to fix the width of images to 4 pix-

els/bytes since our dataset was comprised of a mixture of 32 bit ARM
and ARM/Thumb binary files. Thumb mode instructions (which are 2
bytes instead of 4) would have also been accommodated for in the 4
pixel width scheme by duplicating the 2 pixels. However due to binary
sizes, fixing the width of the image to 4 pixels/bytes resulted in images
with extended lengths. Although this method would have ensured all
rows of pixels/instructions are in close proximity to their preceding and



BinSeg: Code and Data Separation in Non-standard Binary Formats 9

succeeding instructions, it does not maintain regional proximity, this is
crucial for section class detection. Thus, this approach was discarded and
we decided to use square images. The dimensions (width/height) were
calculated as follows (See Fig.6a and Fig.6b):

dimension = ⌈
√
totalbytes⌉ (1)

If the total number of bytes was not a perfect square, the image would
have some pixels unfilled in the last rows. These unfilled pixels were filled
with padding of black color in both the grayscale image and the RGB
annotation images.

2. Hilbert curves: For Hilbert curves, we had to conform to square images
since they can only be generated for square images with dimensions in the
power of 2. Thus we first generated square images with Snake scan and
then upsampled them to a width and height which was the nearest power
of 2. The resulting image was then traversed pixel by pixel, according to
the hilbert curves path, to generate the image (See Fig.7a and Fig.7b).

– Size selection: For upsampling, we analyzed the performance of several
interpolation filters offered by the python library Pillow. Both Bilinear and
Bicubic filters rely on interpolation to determine pixel values in the up-
sampled image. Upsampling using these aforementioned filters will result in
creating new pixels/bytes that didn’t exist in the original binary. This is
problematic because not only does it create data but it also causes uncer-
tainty in creating groundtruth class labels. Additionally, when this is applied
directly on label images, this results in pixels which are not purely red/green
since the values are calculated using weighted averages. Nearest neighbor in-
terpolation, on the other hand, relies on the ratio of (x,y) coordinate in
the original image to determine the position in the upsampled image. This
method does not generate any new pixel values, rather it copies the values
of the nearest neighbour. This is suitable for data that is not smooth (due
to fine grained labeling). It also results in pixels which are purely green/red.

3.2 Semantic segmentation models

After generating the dataset of grayscale and their corresponding label images,
the next step was to train a semantic segmentation model to learn to differenti-
ate between code and data bytes and sections. To perform this binary analysis
through images, we decided to use a semantic segmentation model, Deeplab [6].

Deeplab DeepLab is a state-of-art deep learning model for semantic image seg-
mentation, where the goal is to assign semantic labels (e.g., person, background,
tumor) to every pixel in the input image. While its primarily used to perform
classification on natural images, we employ transfer learning to train the last



10 H. Benkraouda et al.

Fig. 4: Overview of CNNs with dilated convolutions used in DeepLab.v1.

Fig. 5: Overview of encoder-decoder structure used in DeepLab.v3+.

few layers on our own binary files dataset. Deeplab.v1 is based on CNNs with
dilated convolutions (See Fig. 4), the next version (v2) of DeepLab employed
additional ‘dilated (atrous) spatial pyramid pooling’ (ASPP) layer and opti-
misation of ASPP layer hyperparameters. The final version (v3), the one used
in this paper, leverages an encoder-decoder structure (See Fig. 5) with dilated
convolutions [25].

Learning
Rate

Iterations
Training
batch

Hyperparameter
value

0.0001 0.001 0.01 0.1 500 1000 2000 4 8 16

Accuracy 82.34 85.90% 86.53% 54.08% 88.64% 89.11% 89.68% 84.30% 85.25% 85.80%

Table 3: Hyperparameter evaluation for learning rate, number of iterations, and
training batch size.

Tuning Hyperparameters We studied the hyperparameters of our baseline
model in Deeplab and realized there was significant room for improvement.
We tweaked variables one by one keeping everything else constant. This ap-
proach resulted in an increase in accuracy as we increased the number of it-
erations, learning rate, training batch size, and the dataset size. We tested
out the accuracy against several pre-trained models on Deeplab. The model



BinSeg: Code and Data Separation in Non-standard Binary Formats 11

deeplabv3xceptionade20ktrain gave us the highest accuracy. We experimented
with the model variants too, that are used to calculate the loss at every step;
’xception 65’ generated the best results. Furthermore, models trained on Hilbert
curve generated images showed better result compared to Snake scan images.
This is due to the preserved locality when mapping from 1D to 2D space. Ta-
bles 3, 4 summarize the hyperparameters tweaked and the resulting improvement
from each one.

Output
Stride

Model
variant

Pre-trained
model

Hyperparameter
value

16 32 xception 71 xception 65
xception
ade20k
train

pascal
train aug

Accuracy 85.80% 84.80% 57.20% 85.80% 85.80% 83.70%

Table 4: Hyperparameter evaluation for output stride size, model variants, and
pre-trained models used.

4 Experimental Evaluation

In this section, we evaluate our proposed methodology with respect to its separa-
tion accuracy. In particular, we evaluate the accuracy of our model in accurately
classifying data and code sections and bytes for standard binary formats, namely,
ELF 32-bit ARM binaries. We further use a real-world PLC dataset to study
how well our model can adapt to non-standard binary formats.

4.1 Model performance on standard binary formats

Using the optimal hyperparameters found from the previous section, we evaluate
the performance of our trained models on a subset of unseen data from the same
dataset used for training. This is used to assess the proposed method’s success
on standard binary formats. For every image, we calculated the accuracy of its
predicted image as follows:

accuracy = (truepositives/totalbytes) ∗ 100 (2)

Here, the truepositives variable represents how many pixels were correctly iden-
tified (as code or data) while totalbytes indicates the total number of pixels in
the image. The accuracies listed in the following section are derived by taking the
average of accuracies of all images calculated using the aforementioned formula.
Table 5 shows a summary of the results from our experiments. We can see that
the model trained using Hilbert curve based images (max. accuracy: 91.91%)
outperforms the model trained on Snake curve based images (max. accuracy:



12 H. Benkraouda et al.

89.22%) with a margin of nearly 3%. Additionally, Fig. 6 and Fig. 7 show the
visual results from the experiments. It can be clearly seen from the original and
experimental label image that the method performs very well for code section
detection, while it under-performs for embedded bytes. (See Fig. 6b and Fig. 6c,
Fig. 7b and Fig. 7c).

Traversal
method

Iter.
Learning

rate

Dataset
size

(train)

Dataset
size
(test)

Image
size

Accuracy

Snake
curve

500 0.01 1999 304 256x256 89.22%

1000 86.53%
Hilbert
curve

500 90.49%

1000 91.91%

Table 5: Summary of results for standard binary formats using both Snake curve
and Hilbert curve generated images.

(a) Binary image. (b) Original label image. (c) Exp. label image.

Fig. 6: Overview of Snake curve generated binary images and results.

4.2 Model performance on non-standard binary formats

Using the best performing models for both Hilbert curve and Snake curve images,
we evaluate the performance of our trained models on a dataset of real-world
PLC binaries. This is used to assess the proposed method’s success on non-
standard binary formats. We obtained an open-source real-world PLC binary
dataset [19]. After removing outlier files, the dataset contained 54 PLC binaries.
These binaries are 32-bit ARM binaries, but do not conform to any standard
binary format. We used these binaries as a proof of concept. Our experiments
were limited to these binaries due to the challenging task of establishing ground-
truth for byte annotations in non-standard binary formats. We used the same



BinSeg: Code and Data Separation in Non-standard Binary Formats 13

(a) Binary image (b) Original label image. (c) Exp. label image.

Fig. 7: Overview of Hilbert curve generated binary images and results.

methods used in Sub-section 3.1 to visualize the binaries and to generate the
ground-truth bytes/section label images. The only difference is that we used
ICSREF [12] to find the true class labels for bytes and sections. Fig. 8 shows an
overview of our testing setup.

We use the same method (See Eqn. 1) to calculate the accuracy of the model
on PLC binaries. Our experiments show that there is a significant drop in ac-
curacy when we test on non-standard binaries. Hilbert curve based models drop
from 91.91% for standard binary formats to 81.75% for non-standard formats,
while Snake curve based models drop 89.22% to 68.19%. Fig. 9 and Fig. 10 shed
some light on the reason for the accuracy drop. It is evident that the PLC bi-
nary format contains a lot of inline data within code sections, the description
of the binary format in ICSREF [12] mentions that the functions and function
blocks sections contain data section at the end of each these sections. Since our
method performed better with section identification, it was especially disadvan-
taged with this binary format. Still, we are able to clearly find the large sections
and gain general insights about the new binary formats with minimal effort.

Fig. 8: Overview of the semantic segmentation testing Setup.



14 H. Benkraouda et al.

(a) Original label image. (b) Exp. label image.

Fig. 9: Overview of Snake curve generated binary images and results for PLC
binaries.

(a) Original label image. (b) Exp. label image.

Fig. 10: Overview of Hilbert curve generated binary images and results for PLC
binaries.

5 Related Work

Code and data separation in executable files is a well-known problem in static
binary analysis. Conventional disassemblers have to perform this task as well.
Many previous research efforts focused on detecting inline code within data sec-
tions or inline data within code sections for standard binary formats. Researchers
in [27] focus on classification of bytes using a language model to identify the tran-
sitions from different data types (code to data, data to code, code to code) in x86
binaries. They leverage reference arrays and utility functions used to train the
model. This work outperformed state-of-the-art solution IDA Pro. More recently
researchers have started to utilise the advances in machine learning to approach
this problem. The work in [11] uses supervised learning over a graph to solve
the code discovery problem in x86 binaries, the authors of this paper leverage
structural SVMs to classify bytes as code or data. Most of the work focuses on



BinSeg: Code and Data Separation in Non-standard Binary Formats 15

x86 binaries, this is due to their variable length instructions. [5] discusses the
code discovery as a sub-problem of binary translation. The authors target ARM
binaries and discuss the challenges introduced from ARM/Thumb binaries. The
most recent paper in this field is [16], the authors propose ELISA a Code and
Data section and byte class identification method. They analyze the binary as a
sequence and use a Conditional Random Field (CRF) based model. They fortify
their solution with ISA specific heuristics and an ISA detection method. Our
work fills the gap concerning non-standard binary formats and focuses on build-
ing adaptable models that can extract information about these formats with no
prior knowledge about the binary format.

6 Conclusion

The work in this paper proposed a new method for automating one of the stages
of binary analysis, code and data separation. This automation is especially im-
portant and useful in the case of propriety/unavailable software source code.
Although there exist classical binary analysis tools that are designed to analyze
source code in an automated manner, most fail to analyze atypical binary for-
mats. This is due to the fact that boundaries between data and code section are
clear and conventional in typical binary codes. The correct and clear marking
prevents any errors due to misinterpreting data as executable instructions and
vice-versa. Due to the rapid changes and advancements in technology (i.e. In-
dustry 4.0, IoT) more unknown formats of binary files are being produced. In
this work we utilize image-based machine learning algorithms to automate our
process. We convert the binary files to image files where the algorithm performs
semantic segmentation to identify the data and code sections of the binary code.
Our results show that the model trained using Hilbert curve-based images has
a achieved a maximum accuracy of 91.91% while the model trained on Snake
curve-based images achieved a maximum accuracy of 89.22%. The results also
show that our suggested method performs very well for code section detection,
while it under-performs for embedded bytes.



16 H. Benkraouda et al.

References

1. Automatic classification of object code using machine learning. Digital Investiga-
tion 14, S156 – S162 (2015), the Proceedings of the Fifteenth Annual DFRWS
Conference

2. Abbasi, A., Holz, T., Zambon, E., Etalle, S.: Ecfi: Asynchronous control flow in-
tegrity for programmable logic controllers. Proceedings of the 33rd Annual Com-
puter Security Applications Conference (2017)

3. Abuhamad, M., Abuhmed, T., Mohaisen, A., Nyang, D.: Large-scale and language-
oblivious code authorship identification. Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (2018)

4. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: Bap: A binary analysis plat-
form. In: CAV (2011)

5. Chen, J.Y., Shen, B.Y., Ou, Q., Yang, W., Hsu, W.: Effective code discovery for
arm/thumb mixed isa binaries in a static binary translator. 2013 International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems (CASES)
pp. 1–10 (2013)

6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Deeplab: Seman-
tic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence
(2018)

7. Corina, J., Machiry, A., Salls, C., Shoshitaishvili, Y., Hao, S., Krügel, C., Vigna,
G.: Difuze: Interface aware fuzzing for kernel drivers. Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (2017)

8. Cova, M., Felmetsger, V., Banks, G., Vigna, G.: Static detection of vulnerabilities
in x86 executables. 2006 22nd Annual Computer Security Applications Conference
(ACSAC’06) pp. 269–278 (2006)

9. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: A
guided fuzzer to find buffer boundary violations. In: USENIX Security Symposium
(2013)

10. Kaner, Y., Sternberg, B.: Reverse-engineering database - an ida-pro plug-in (2012)
11. Karampatziakis, N.: Static analysis of binary executables using structural svms.

In: NIPS (2010)
12. Keliris, A., Maniatakos, M.: ICSREF: A framework for automated reverse engineer-

ing of industrial control systems binaries. In: NDSS. The Internet Society (2019)
13. Khormali, A., Abusnaina, A.A., Chen, S., Nyang, D., Mohaisen, A.: Copycat: Prac-

tical adversarial attacks on visualization-based malware detection. ArXiv (2019)
14. Lee, D., Song, I.S., Kim, K.J., hyeon Jeong, J.: A study on malicious codes pattern

analysis using visualization. 2011 International Conference on Information Science
and Applications pp. 1–5 (2011)

15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 3431–3440 (2015)

16. Nicolao, P., Pogliani, M., Polino, M., Carminati, M., Quarta, D., Zanero, S.: Elisa:
Eliciting isa of raw binaries for fine-grained code and data separation. In: DIMVA
(2018)

17. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. ArXiv (2015)

18. Rosenblum, N.E., Zhu, X., Miller, B., Hunt, K.: Learning to analyze binary com-
puter code. In: AAAI (2008)



BinSeg: Code and Data Separation in Non-standard Binary Formats 17

19. Sarkar, E., Benkraouda, H., Maniatakos, M.: I came, i saw, i hacked: Automated
generation of process-independent attacks for industrial control systems. Proceed-
ings of the 15th ACM Asia Conference on Computer and Communications Security
(2020)

20. Shoshitaishvili, Y., Wang, R., Hauser, C., Krügel, C., Vigna, G.: Firmalice - au-
tomatic detection of authentication bypass vulnerabilities in binary firmware. In:
NDSS (2015)

21. Shoshitaishvili, Y., Wang, R., Salls, C., Stephens, N., Polino, M., Dutcher, A.,
Grosen, J., Feng, S., Hauser, C., Krügel, C., Vigna, G.: Sok: (state of) the art of
war: Offensive techniques in binary analysis. 2016 IEEE Symposium on Security
and Privacy (SP) pp. 138–157 (2016)

22. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang, Z., New-
some, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer secu-
rity via binary analysis. In: ICISS (2008)

23. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshi-
taishvili, Y., Krügel, C., Vigna, G.: Driller: Augmenting fuzzing through selective
symbolic execution. In: NDSS (2016)

24. Tiegelkamp, M., John, K.H.: IEC 61131-3: Programming industrial automation
systems. Springer (1995)

25. Ulku, I., Akagunduz, E.: A survey on deep learning-based architectures for seman-
tic segmentation on 2d images. arXiv: Computer Vision and Pattern Recognition
(2019)

26. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Dif-
ferentiating code from data in x86 binaries. In: ECML/PKDD (2011)

27. Wartell, R., Zhou, Y., Hamlen, K.W., Kantarcioglu, M., Thuraisingham, B.: Dif-
ferentiating code from data in x86 binaries. In: ECML/PKDD (2011)

28. Weissenbock, J., Fröhler, B., Gröller, E., Kastner, J., Heinzl, C.: Dynamic vol-
ume lines: Visual comparison of 3d volumes through space-filling curves. IEEE
Transactions on Visualization and Computer Graphics 25, 1040–1049 (2019)


